Semidefinite programming relaxation approach for multiuser detection of QAM signals

  • Authors:
  • Zhiwei Mao;Xianmin Wang;Xiaofeng Wang

  • Affiliations:
  • Lakehead Univ., Thunder Bay;-;-

  • Venue:
  • IEEE Transactions on Wireless Communications
  • Year:
  • 2007

Quantified Score

Hi-index 0.01

Visualization

Abstract

A semidefinite programming (SDP) relaxation approach is proposed to solve multiuser detection problems in systems with M-ary quadrature amplitude modulation (M-QAM). In the proposed approach, the optimal M-ary maximum likelihood (ML) detection is carried out by converting the associated M-ary integer programming problem into a binary integer programming problem. Then a relaxation approach is adopted to convert the binary integer programming problem into an SDP problem. This relaxation process leads to a detector of much reduced complexity. A multistage approach is then proposed to improve the performance of the SDP relaxation based detectors. Computer simulations demonstrate that the symbol-error rate (SER) performance offered by the proposed multistage SDP relaxation based detectors outperforms that of several existing suboptimal detectors.