Low-delay rate control for real-time H.264/AVC video coding

  • Authors:
  • Minqiang Jiang;Nam Ling

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Multimedia
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents an efficient rate control scheme for the H.264/AVC video coding in low-delay environments. In our scheme, we propose an enhancement to the buffer-status based H.264/AVC bit allocation method. The enhancement is by using a PSNR-based frame complexity estimation to improve the existing mean absolute difference based (MAD-based) complexity measure. Bit allocation to each frame is not just computed by encoder buffer status but also adjusted by a combined frame complexity measure. To prevent the buffer from undesirable overflow or underflow under small buffer size constraint in low delay environment,the computed quantization parameter (QP) for the current MB is adjusted based on actual encoding results at that point. We also propose to compare the bits produced by each mode with the average target bits per MB to dynamically modify Lagrange multiplier (λMODE) for mode decision. The objective of QP and λMODE adjustment is to produce bits as close to the frame target as possible, which is especially important for low delay applications. Simulation results show that the H.264 coder, using our proposed scheme, obtains significant improvement for the mismatch ratio of target bits and actual bits in all testing cases, achieves a visual quality improvement of about 0.6 dB on the average, performs better for buffer overflow and underflow,and achieves a similar or smaller PSNR deviation.