Header Detection to Improve Multimedia Quality Over Wireless Networks

  • Authors:
  • S. A. Khayam;S. S. Karande;M. U. Ilyas;H. Radha

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI;-;-;-

  • Venue:
  • IEEE Transactions on Multimedia
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

Wireless multimedia studies have revealed that forward error correction (FEC) on corrupted packets yields better bandwidth utilization and lower delay than retransmissions. To facilitate FEC-based recovery, corrupted packets should not be dropped so that maximum number of packets is relayed to a wireless receiver's FEC decoder. Previous studies proposed to mitigate wireless packet drops by a partial checksum that ignored payload errors. Such schemes require modifications to both transmitters and receivers, and incur packet-losses due to header errors. In this paper, we introduce a receiver-based scheme which uses the history of active multimedia sessions to detect transmitted values of corrupted packet headers, thereby improving wireless multimedia throughput. Header detection is posed as the decision-theoretic problem of multihypothesis detection of known parameters in noise. Performance of the proposed scheme is evaluated using trace-driven video simulations on an 802.11b local area network. We show that header detection with application layer FEC provides significant throughput and video quality improvements over the conventional UDP/IP/802.11 protocol stack