Flood forecasting using radial basis function neural networks

  • Authors:
  • F. -J. Chang;Jin-Ming Liang;Yen-Chang Chen

  • Affiliations:
  • Dept. of Bioenvironmental Syst. Eng., Nat. Taiwan Univ., Taipei;-;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

A radial basis function (RBF) neural network (NN) is proposed to develop a rainfall-runoff model for three-hour-ahead flood forecasting. For faster training speed, the RBF NN employs a hybrid two-stage learning scheme. During the first stage, unsupervised learning, fuzzy min-max clustering is introduced to determine the characteristics of the nonlinear RBFs. In the second stage, supervised learning, multivariate linear regression is used to determine the weights between the hidden and output layers. The rainfall-runoff relation can be considered as a linear combination of some nonlinear RBFs. Rainfall and runoff events of the Lanyoung River collected during typhoons are used to train, validate,and test the network. The results show that the RBF NN can be considered a suitable technique for predicting flood flow