Motion compensated lossy-to-lossless compression of 4-D medical images using integer wavelet transforms

  • Authors:
  • A. A. Kassim;Pingkun Yan;Wei Siong Lee;K. Sengupta

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore;-;-;-

  • Venue:
  • IEEE Transactions on Information Technology in Biomedicine
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes a method for progressive lossy-to-lossless compression of four-dimensional (4-D) medical images (sequences of volumetric images over time) by using a combination of three-dimensional (3-D) integer wavelet transform (IWT) and 3-D motion compensation. A 3-D extension of the set-partitioning in hierarchical trees (SPIHT) algorithm is employed for coding the wavelet coefficients. To effectively exploit the redundancy between consecutive 3-D images, the concepts of key and residual frames from video coding is used. A fast 3-D cube matching algorithm is employed to do motion estimation. The key and the residual volumes are then coded using 3-D IWT and the modified 3-D SPIHT. The experimental results presented in this paper show that our proposed compression scheme achieves better lossy and lossless compression performance on 4-D medical images when compared with JPEG-2000 and volumetric compression based on 3-D SPIHT.