Modeling of workflow-engaged networks on radiology transfers across a metro network

  • Authors:
  • S. Camorlinga;B. Schofield

  • Affiliations:
  • Dept. of Radiol., Univ. of Manitoba, Winnipeg, Man.;-

  • Venue:
  • IEEE Transactions on Information Technology in Biomedicine
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Radiology metro networks bear the challenging proposition of interconnecting several hospitals in a region to provide a comprehensive diagnostic imaging service. Consequences of a poorly designed and implemented metro network could cause delays or no access at all when health care providers try to retrieve medical cases across the network. This could translate into limited diagnostic services to patients, resulting in negative impacts to the patients' medical treatment. A workflow-engaged network (WEN) is a new network paradigm. A WEN appreciates radiology workflows and priorities in using the network. A WEN greatly improves the network performance by guaranteeing that critical image transfers experience minimal delay. It adjusts network settings to ensure the application's requirements are met. This means that high-priority image transfers will have guaranteed and known delay times, whereas lower-priority traffic will have increased delays. This paper introduces a modeling to understand the benefits that WEN brings to a radiology metro network. The modeling uses actual data patterns and flows found in a hospital metro region. The workflows considered are based on the Integrating the Healthcare Enterprise profiles. This modeling has been applied to metropolitan workflows of a health region. The modeling helps identify the kind of metro network that supports data patterns and flows in a metro area. The results of the modeling show that a 155-Mb/s metropolitan area network (MAN) with WEN operates virtually equal to a normal 622-Mb/s MAN without WEN, with potential cost savings for leased line services measured in the millions of dollars per year