A Framework for Medical Image Retrieval Using Machine Learning and Statistical Similarity Matching Techniques With Relevance Feedback

  • Authors:
  • Md. M. Rahman;P. Bhattacharya;B. C. Desai

  • Affiliations:
  • Dept. of Comput. Sci., Concordia Univ., Montreal, Que.;-;-

  • Venue:
  • IEEE Transactions on Information Technology in Biomedicine
  • Year:
  • 2007

Quantified Score

Hi-index 0.00

Visualization

Abstract

A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed. Organization of images in such a database (DB) is well defined with predefined semantic categories; hence, it can be useful for category-specific searching. The proposed framework consists of machine learning methods for image prefiltering, similarity matching using statistical distance measures, and a relevance feedback (RF) scheme. To narrow down the semantic gap and increase the retrieval efficiency, we investigate both supervised and unsupervised learning techniques to associate low-level global image features (e.g., color, texture, and edge) in the projected PCA-based eigenspace with their high-level semantic and visual categories. Specially, we explore the use of a probabilistic multiclass support vector machine (SVM) and fuzzy c-mean (FCM) clustering for categorization and prefiltering of images to reduce the search space. A category-specific statistical similarity matching is proposed in a finer level on the prefiltered images. To incorporate a better perception subjectivity, an RF mechanism is also added to update the query parameters dynamically and adjust the proposed matching functions. Experiments are based on a ground-truth DB consisting of 5000 diverse medical images of 20 predefined categories. Analysis of results based on cross-validation (CV) accuracy and precision-recall for image categorization and retrieval is reported. It demonstrates the improvement, effectiveness, and efficiency achieved by the proposed framework