A fuzzy Petri net-based expert system and its application to damageassessment of bridges

  • Authors:
  • J. Lee;K. F.R. Liu;Weiling Chiang

  • Affiliations:
  • Dept. of Comput. Sci. & Inf. Eng., Nat. Central Univ., Chung-Li;-;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, a fuzzy Petri net approach to modeling fuzzy rule-based reasoning is proposed to bring together the possibilistic entailment and the fuzzy reasoning to handle uncertain and imprecise information. The three key components in our fuzzy rule-based reasoning-fuzzy propositions, truth-qualified fuzzy rules, and truth-qualified fuzzy facts-can be formulated as fuzzy places, uncertain transitions, and uncertain fuzzy tokens, respectively. Four types of uncertain transitions-inference, aggregation, duplication, and aggregation-duplication transitions-are introduced to fulfil the mechanism of fuzzy rule-based reasoning. A framework of integrated expert systems based on our fuzzy Petri net, called fuzzy Petri net-based expert system (FPNES), is implemented in Java. Major features of FPNES include knowledge representation through the use of hierarchical fuzzy Petri nets, a reasoning mechanism based on fuzzy Petri nets, and transformation of modularized fuzzy rule bases into hierarchical fuzzy Petri nets. An application to the damage assessment of the Da-Shi bridge in Taiwan is used as an illustrative example of FPNES