A two-level hybrid evolutionary algorithm for modelingone-dimensional dynamic systems by higher-order ODE models

  • Authors:
  • Hong-Qing Cao;Li-Shan Kang;Tao Guo;Yu-Ping Chen;H. de Garis

  • Affiliations:
  • State Key Lab. of Software Eng., Wuhan Univ.;-;-;-;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a new algorithm for modeling one-dimensional (1-D) dynamic systems by higher-order ordinary differential equation (HODE) models instead of the ARMA models as used in traditional time series analysis. A two-level hybrid evolutionary modeling algorithm (THEMA) is used to approach the modeling problem of HODE's for dynamic systems. The main idea of this modeling algorithm is to embed a genetic algorithm (GA) into genetic programming (GP), where GP is employed to optimize the structure of a model (the upper level), while a GA is employed to optimize the parameters of the model (the lower level). In the GA, we use a novel crossover operator based on a nonconvex linear combination of multiple parents which works efficiently and quickly in parameter optimization tasks. Two practical examples of time series are used to demonstrate the THEMA's effectiveness and advantages