A learning-based method for image super-resolution from zoomed observations

  • Authors:
  • M. V. Joshi;S. Chaudhuri;R. Panuganti

  • Affiliations:
  • Dept. of Electron. & Commun. Eng., Gogte Inst. of Technol., Belgaum, India;-;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a technique for super-resolution imaging of a scene from observations at different camera zooms. Given a sequence of images with different zoom factors of a static scene, we obtain a picture of the entire scene at a resolution corresponding to the most zoomed observation. The high-resolution image is modeled through appropriate parameterization, and the parameters are learned from the most zoomed observation. Assuming a homogeneity of the high-resolution field, the learned model is used as a prior while super-resolving the scene. We suggest the use of either a Markov random field (MRF) or an simultaneous autoregressive (SAR) model to parameterize the field based on the computation one can afford. We substantiate the suitability of the proposed method through a large number of experimentations on both simulated and real data.