Homography-based visual servo regulation of mobile robots

  • Authors:
  • Yongchun Fang;W. E. Dixon;D. M. Dawson;P. Chawda

  • Affiliations:
  • Inst. of Robotics & Autom. Inf. Syst., Nankai Univ., Tianjin, China;-;-;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

A monocular camera-based vision system attached to a mobile robot (i.e., the camera-in-hand configuration) is considered in this paper. By comparing corresponding target points of an object from two different camera images, geometric relationships are exploited to derive a transformation that relates the actual position and orientation of the mobile robot to a reference position and orientation. This transformation is used to synthesize a rotation and translation error system from the current position and orientation to the fixed reference position and orientation. Lyapunov-based techniques are used to construct an adaptive estimate to compensate for a constant, unmeasurable depth parameter, and to prove asymptotic regulation of the mobile robot. The contribution of this paper is that Lyapunov techniques are exploited to craft an adaptive controller that enables mobile robot position and orientation regulation despite the lack of an object model and the lack of depth information. Experimental results are provided to illustrate the performance of the controller.