Recursive Camera-Motion Estimation With the Trifocal Tensor

  • Authors:
  • Ying Kin Yu;Kin Hong Wong;M. M.Y. Chang;Siu Hang Or

  • Affiliations:
  • Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong;-;-;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, an innovative extended Kalman filter (EKF) algorithm for pose tracking using the trifocal tensor is proposed. In the EKF, a constant-velocity motion model is used as the dynamic system, and the trifocal-tensor constraint is incorporated into the measurement model. The proposed method has the advantages of those structure- and-motion-based approaches in that the pose sequence can be computed with no prior information on the scene structure. It also has the strengths of those model-based algorithms in which no updating of the three-dimensional (3-D) structure is necessary in the computation. This results in a stable, accurate, and efficient algorithm. Experimental results show that the proposed approach outperformed other existing EKFs that tackle the same problem. An extension to the pose-tracking algorithm has been made to demonstrate the application of the trifocal constraint to fast recursive 3-D structure recovery