Grid Commerce, Market-Driven G-Negotiation, and Grid Resource Management

  • Authors:
  • Kwang Mong Sim

  • Affiliations:
  • Hong Kong Baptist Univ., Kowloon

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Although the management of resources is essential for realizing a computational grid, providing an efficient resource allocation mechanism is a complex undertaking. Since grid providers and consumers may be independent bodies, negotiation among them is necessary. The contribution of this paper is showing that market-driven agents (MDAs) are appropriate tools for grid resource negotiation. MDAs are e-negotiation agents designed with the flexibility of: 1) making adjustable amounts of concession taking into account market rivalry, outside options, and time preferences and 2) relaxing bargaining terms in the face of intense pressure. A heterogeneous testbed consisting of several types of e-negotiation agents to simulate a grid computing environment was developed. It compares the performance of MDAs against other e-negotiation agents (e.g., Kasbah) in a grid-commerce environment. Empirical results show that MDAs generally achieve: 1) higher budget efficiencies in many market situations than other e-negotiation agents in the testbed and 2) higher success rates in acquiring grid resources under high grid loadings