Real-Time Motion Segmentation of Sparse Feature Points at Any Speed

  • Authors:
  • S. J. Pundlik;S. T. Birchfield

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., Clemson Univ., Clemson, SC;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a real-time incremental approach to motion segmentation operating on sparse feature points. In contrast to previous work, the algorithm allows for a variable number of image frames to affect the segmentation process, thus enabling an arbitrary number of objects traveling at different relative speeds to be detected. Feature points are detected and tracked throughout an image sequence, and the features are grouped using a spatially constrained expectation-maximization (EM) algorithm that models the interactions between neighboring features using the Markov assumption. The primary parameter used by the algorithm is the amount of evidence that must accumulate before features are grouped. A statistical goodness-of-fit test monitors the change in the motion parameters of a group over time in order to automatically update the reference frame. Experimental results on a number of challenging image sequences demonstrate the effectiveness and computational efficiency of the technique.