Overcoming software fragility with interacting feedback loops and reversible phase transitions

  • Authors:
  • Peter Van Roy

  • Affiliations:
  • Dept. of Computing Science and Engineering, Universit é catholique de Louvain, Louvain-la-Neuve, Belgium

  • Venue:
  • VoCS'08 Proceedings of the 2008 international conference on Visions of Computer Science: BCS International Academic Conference
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Programs are fragile for many reasons, including software errors, partial failures, and network problems. One way to make software more robust is to design it from the start as a set of interacting feedback loops. Studying and using feedback loops is an old idea that dates back at least to Norbert Wiener's work on Cybernetics. Up to now almost all work in this area has focused on how to optimize single feedback loops. We show that it is important to design software with multiple interacting feedback loops. We present examples taken from both biology and software to substantiate this. We are realizing these ideas in the SELFMAN project: extending structured overlay networks (a generalization of peer-to-peer networks) for large-scale distributed applications. Structured overlay networks are a good example of systems designed with interacting feedback loops. Using ideas from physics, we postulate that these systems can potentially handle extremely hostile environments. If the system is properly designed, it will perform a reversible phase transition when the node failure rate increases beyond a critical point. The structured overlay network will make a transition from a single connected ring to a set of disjoint rings and back again when the failure rate decreases. We are exploring how to expose this phase transition to the application so that it can continue to provide a service. For validation we are building three realistic applications taken from industrial case studies, using a distributed transaction layer built on top of the overlay. Finally, we propose a research agenda to create a practical design methodology for building systems based on the use of interacting feedback loops and reversible phase transitions.