Automated packing systems-a systems engineering approach

  • Authors:
  • P. F. Whelan;B. G. Batchelor

  • Affiliations:
  • Sch. of Electron. Eng., Dublin City Univ.;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

The ability to manipulate previously unseen objects under visual control is one of the key tasks in the successful implementation of robotic, automated assembly and adaptive material handling systems. The automation of such complex industrial environments will require the development of machine vision systems that are highly adaptable and capable of dealing with a wide range of variable products. An important group of applications of this type is found in the automated packing and nesting of arbitrary shapes. The aim of this work has been to produce an efficient packing strategy that is flexible enough for a wide variety of industrial uses and which can be implemented using fast moderately priced hardware. A systems approach, as distinct from a purely algorithmic one, has been deliberately adopted since the work is concerned with industrial vision applications in which significant problem constraints exist. This paper also outlines the background to this research, and reviews a selection of industrial packing applications. The packing procedure that has been devised, consists of two major components. The first is a geometric packing technique that is based on morphological image processing operations. This is used in conjunction with a prolog based heuristic packing procedure. Some of the factors considered at the heuristic level include shape ordering and shape orientation, both of which must be carried out prior to the implementation of the geometric packer. The heuristic procedures deal with problem constraints that are specific to a given application