An improved constant-time algorithm for computing the Radon and Hough transforms on a reconfigurable mesh

  • Authors:
  • Yi Pan;Keqin Li;M. Hamdi

  • Affiliations:
  • Dept. of Comput. Sci., Dayton Univ., OH;-;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

The Hough transform is an important problem in image processing and computer vision. An efficient algorithm for computing the Hough transform has been proposed on a reconfigurable array by Kao et al. (1995). For a problem with an √N×√N image and an n×n parameter space, the algorithm runs in a constant time on a three-dimensional (3-D) n×n×N reconfigurable mesh where the data bus is N1c/-bit wide. To our best knowledge, this is the most efficient constant-time algorithm for computing the Hough transform on a reconfigurable mesh. In this paper, an improved Hough transform algorithm on a reconfigurable mesh is proposed. For the same problem, our algorithm runs in constant time on a 3-D n*n×n×√n√n reconfigurable mesh, where the data bus is only log N-bit wide. In most practical situations, n=O(√N). Hence, our algorithm requires much less VLSI area to accomplish the same task. In addition, our algorithm can compute the Radon transform (a generalized Hough transform) in O(1) time on the same model, whereas the algorithm in the above paper cannot be adapted to computing Radon transform easily