Mobile robot navigation in 2-D dynamic environments using an electrostatic potential field

  • Authors:
  • K. P. Valavanis;T. Hebert;R. Kolluru;N. Tsourveloudis

  • Affiliations:
  • Robotics & Autom. Lab., Louisiana Univ., Lafayette, LA;-;-;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

Proposes a solution to the two-dimensional (2-D) collision fee path planning problem for an autonomous mobile robot utilizing an electrostatic potential field (EPF) developed through a resistor network, derived to represent the environment. No assumptions are made about the amount of information contained in the a priori environment map (it may be completely empty) or the shape of the obstacles. The well-formulated and well-known laws of electrostatic fields are used to prove that the proposed approach generates an approximately optimal path (based on cell resolution) in a real-time frame. It is also proven through the classical laws of electrostatics that the derived potential function is a global navigation function (as defined by Rimon and Koditschek, 1992), that the field is free of all local minima and that all paths necessarily lead to the goal position. The complexity of the EPF generated path is shown to be O(mnM), where m is the total number of polygons in the environment and nM is the maximum number of sides of a polygonal object. The method is tested both by simulation and experimentally on a Nomad200 mobile robot platform equipped with a ring of sixteen sonar sensors