Neighborhood detection and rule selection from cellular automata patterns

  • Authors:
  • Y. Yang;S. A. Billings

  • Affiliations:
  • Dept. of Autom. Control & Syst. Eng., Sheffield Univ.;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

Using genetic algorithms (GAs) to search for cellular automation (CA) rules from spatio-temporal patterns produced in CA evolution is usually complicated and time-consuming when both, the neighborhood structure and the local rule are searched simultaneously. The complexity of this problem motivates the development of a new search which separates the neighborhood detection from the GA search. In the paper, the neighborhood is determined by independently selecting terms from a large term set on the basis of the contribution each term makes to the next state of the cell to be updated. The GA search is then started with a considerably smaller set of candidate rules pre-defined by the detected neighhorhood. This approach is tested over a large set of one-dimensional (1-D) and two-dimensional (2-D) CA rules. Simulation results illustrate the efficiency of the new algorithm