Robust PI controller design for nonlinear systems via fuzzy modeling approach

  • Authors:
  • Feng Zheng;Qing-Guo Wang;Tong Heng Lee;Xiaogang Huang

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore;-;-;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

The design problem of proportional and proportional-plus-integral (PI) controllers for nonlinear systems is studied. First, the Takagi-Sugeno (T-S) fuzzy model with parameter uncertainties is used to approximate the nonlinear systems. Then a numerically tractable algorithm based on the technique of iterative linear matrix inequalities is developed to design a proportional (static output feedback) controller for the robust stabilization of the system in T-S fuzzy model. Next, we transform the problem of PI controller design to that of proportional controller design for an augmented system and thus bring the solution of the former problem into the configuration of the developed algorithm. Finally, the proposed method is applied to the design of robust stabilizing controllers for the excitation control of power systems. Simulation results show that the transient stability can be improved by using a fuzzy PI controller when large faults appear in the system, compared to the conventional PI controller designed by using linearization method around the steady state