Control of Elementary and Dependent Siphons in Petri Nets and Their Application

  • Authors:
  • ZhiWu Li;MengChu Zhou

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

The importance of siphons is well recognized in the analysis and control of deadlocks in a Petri net. To minimize the number of siphons that have to be explicitly controlled, siphons in a net are divided in a net into elementary and dependent ones. The concepts of token-rich, token-poor, and equivalent siphons are newly presented. More general conditions under which a dependent siphon can be always marked are established. The existence of dependent siphons in a Petri net is investigated. An algorithm is developed to find the set of elementary siphons in a net system for deadlock control purposes. The application of the proposed elementary siphon concept to the existing deadlock control policies is discussed. A few different-sized manufacturing examples are used to demonstrate the advantages of elementary siphon-based policies. The significant value of the proposed theory via a particular deadlock control policy is shown. Finally, some interesting and open problems are discussed.