Sorting genomes using almost-symmetric inversions

  • Authors:
  • Zanoni Dias;Ulisses Dias;Lenwood S. Heath;João C. Setubal

  • Affiliations:
  • University of Campinas;University of Campinas;Virginia Tech;Virginia Tech

  • Venue:
  • Proceedings of the 27th Annual ACM Symposium on Applied Computing
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Inversions are one of the most frequent large-scale rearrangements observed in actual genomes. While a large body of literature exists on mathematical problems related to the computation of the inversion distance between abstract genomes, these works generally do not take into account that most inversions in bacterial chromosomes are symmetric or roughly symmetric with respect to the origin of replication. We define a new problem: how to sort genomes (or permutations) using almost-symmetric inversions. We show an algorithm that can sort any permutation using only almost-symmetric inversions. Two variants of this algorithm are presented that have better performance in practice. We explore the question of determining the minimum number of almost-symmetric inversions needed to sort a genome by presenting lower and upper bounds and results for special permutation families. The results obtained are the first steps in exploring this interesting new problem.