Stability analysis of nonlinear multivariable Takagi-Sugeno fuzzy control systems

  • Authors:
  • F. Cuesta;F. Gordillo;J. Aracil;A. Ollero

  • Affiliations:
  • Escuela Superior de Ingenieros, Seville Univ.;-;-;-

  • Venue:
  • IEEE Transactions on Fuzzy Systems
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

Points out how the nonlinearities involved in multivariable Takagi-Sugeno (T-S) fuzzy control systems could originate complex behavior phenomena, such as multiple equilibrium points or limit cycles, that cannot be detected using conventional stability analysis techniques. In the paper, the application of MIMO frequency-domain methods to predict the existence of multiple equilibria and of limit cycles are presented. The proposed method is based on the formulation of a Lur'e problem from the original structure of a T-S fuzzy system with a fuzzy controller. Furthermore, this technique makes straightforward the application of input-output stability techniques such as the multivariable circle criterion, also called the conicity criterion, and the harmonic balance method. Moreover, in the paper, the application of the harmonic balance method has been generalized to the case of a MIMO fuzzy system with asymmetric nonlinearities and improved by the decreasing conservatism. A new and more general stability index which could be used to perform a bifurcation analysis of fuzzy control systems is presented. The paper includes a collection of examples where the advantages of the proposed approach are made explicit comparing it to the input-output conicity criterion and the Lyapunov direct method