Fuzzy nonlinear regression with fuzzified radial basis function network

  • Authors:
  • Dong Zhang;Luo-Feng Deng;Kai-Yuan Cai;A. So

  • Affiliations:
  • Dept. of Autom. Control, Beihang Univ., Beijing, China;-;-;-

  • Venue:
  • IEEE Transactions on Fuzzy Systems
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

A fuzzified radial basis function network (FRBFN) is a kind of fuzzy neural network that is obtained by direct fuzzification of the well known neural model RBFN. A FRBFN contains fuzzy weights and can handle fuzzy-in fuzzy-out data. This paper shows that a FRBFN can also be interpreted as a kind of fuzzy expert system. Hence it owns the advantages of simple structure and clear physical meaning. Some metrics for fuzzy numbers have been extended to the metrics for n-dimensional fuzzy vectors, which are applicable to computations in FRBFNs. The corresponding metric spaces for n-dimensional fuzzy vectors are proved to be complete. Further, FRBFNs are proved to be able to act as universal function approximators for any continuous fuzzy function defined on a compact set. This paper applies the proposed FRBFN to nonparametric fuzzy nonlinear regression problems for multidimensional LR-type fuzzy data. Fuzzy nonlinear regression with FRBFNs can be formulated as a nonlinear mathematical programming problem. Two training algorithms are proposed to quickly solve the two types of problems under different criteria and constraint conditions, namely, the two-stage and BP (Back-Propagation) training algorithms. Simulation studies are carried out to verify the feasibility and demonstrate the advantages of the proposed approaches.