Coloring planar homothets and three-dimensional hypergraphs

  • Authors:
  • Jean Cardinal;Matias Korman

  • Affiliations:
  • Université Libre de Bruxelles (ULB), Brussels, Belgium;Université Libre de Bruxelles (ULB), Brussels, Belgium

  • Venue:
  • LATIN'12 Proceedings of the 10th Latin American international conference on Theoretical Informatics
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

We prove that every finite set of homothetic copies of a given compact and convex body in the plane can be colored with four colors so that any point covered by at least two copies is covered by two copies with distinct colors. This generalizes a previous result from Smorodinsky (SIAM J. Disc. Math. 2007). Then we show that for any k≥2, every three-dimensional hypergraph can be colored with 6(k−1) colors so that every hyperedge e contains min { |e|,k } vertices with mutually distinct colors. This refines a previous result from Aloupis et al. (Disc. & Comp. Geom. 2009). As corollaries, we obtain constant factor improvements for conflict-free coloring, k-strong conflict-free coloring, and choosability. Proofs of the upper bounds are constructive and yield simple, polynomial-time algorithms.