Limiting link disclosure in social network analysis through subgraph-wise perturbation

  • Authors:
  • Amin Milani Fard;Ke Wang;Philip S. Yu

  • Affiliations:
  • Simon Fraser University, Burnaby, BC, Canada;Simon Fraser University, Burnaby, BC, Canada;University of Illinois at Chicago, Chicago, Illinois

  • Venue:
  • Proceedings of the 15th International Conference on Extending Database Technology
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Link disclosure between two individuals in a social network could be a privacy breach. To limit link disclosure, previous works modeled a social network as an undirected graph and randomized a link over the entire domain of links, which leads to considerable structural distortion to the graph. In this work, we address this issue in two steps. First, we model a social network as a directed graph and randomize the destination of a link while keeping the source of a link intact. The randomization ensures that, if the prior belief about the destination of a link is bounded by some threshold, the posterior belief, given the published graph, is no more than another threshold. Then, we further reduce structural distortion by a subgraph-wise perturbation in which the given graph is partitioned into several subgraphs and randomization of destination nodes is performed within each subgraph. The benefit of subgraph-wise perturbation is that it retains a destination node with a higher retention probability and replaces a destination node with a node from a local neighborhood. We study the trade-off of utility and privacy of subgraph-wise perturbation.