Reduction-based formal analysis of BGP instances

  • Authors:
  • Anduo Wang;Carolyn Talcott;Alexander J. T. Gurney;Boon Thau Loo;Andre Scedrov

  • Affiliations:
  • SRI International, University of Pennsylvania;SRI International, University of Pennsylvania;SRI International, University of Pennsylvania;SRI International, University of Pennsylvania;SRI International, University of Pennsylvania

  • Venue:
  • TACAS'12 Proceedings of the 18th international conference on Tools and Algorithms for the Construction and Analysis of Systems
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Today's Internet interdomain routing protocol, the Border Gateway Protocol (BGP), is increasingly complicated and fragile due to policy misconfigurations by individual autonomous systems (ASes). These misconfigurations are often difficult to manually diagnose beyond a small number of nodes due to the state explosion problem. To aid the diagnosis of potential anomalies, researchers have developed various formal models and analysis tools. However, these techniques do not scale well or do not cover the full set of anomalies. Current techniques use oversimplified BGP models that capture either anomalies within or across ASes, but not the interactions between the two. To address these limitations, we propose a novel approach that reduces network size prior to analysis, while preserving crucial BGP correctness properties. Using Maude, we have developed a toolkit that takes as input a network instance consisting of ASes and their policy configurations, and then performs formal analysis on the reduced instance for safety (protocol convergence). Our results show that our reductionbased analysis allows us to analyze significantly larger network instances at low reduction overhead.