Simulating neurons in reaction-diffusion chemistry

  • Authors:
  • James Stovold;Simon O'Keefe

  • Affiliations:
  • Department of Computer Science, University of York, UK;Department of Computer Science, University of York, UK

  • Venue:
  • IPCAT'12 Proceedings of the 9th international conference on Information Processing in Cells and Tissues
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Diffusive Computation is a method of using diffusing particles as a representation of data. The work presented attempts to show that through simulating spiking neurons, diffusive computation has at least the same computational power as spiking neural networks. We demonstrate (by simulation) that wavefronts in a Reaction-Diffusion system have a cumulative effect on concentration of reaction components when they arrive at the same point in the reactor, and that a catalyst-free region acts as a threshold on the initiation of an outgoing wave. Spiking neuron models can be mapped onto this system, and therefore RD systems can be used for computation using the same models as are applied to spiking neurons.