Interference estimation with applications to blind multiple-access communication over fading channels

  • Authors:
  • M. L. McCloud;L. L. Scharf

  • Affiliations:
  • Dept. of Electr. Eng., Colorado Univ., Boulder, CO;-

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2006

Quantified Score

Hi-index 754.84

Visualization

Abstract

We consider the detection of nonorthogonal multipulse signals on multiple-access fading channels. The generalized maximum-likelihood rule is employed to decode users whose complex fading gains are unknown. We develop geometrical interpretations for the resulting detectors and their corresponding asymptotic efficiencies. The generalized maximum-likelihood detection rule is then applied to find a matched subspace detector for the frequency-selective fading channel, under the assumption of a short coherence time (or long coherence time without the computational power to track the fading parameters). We propose blind implementations of these detectors for nonorthogonal multipulse signaling on both frequency-nonselective and frequency-selective multiple-access fading channels. These blind detectors extend the results of Wang and Poor (see ibid., vol.44, p.677-89, 1998) to multipulse modulation and fast frequency selective fading. For comparison, the minimum mean-squared error decision rules for these channels are derived and blind implementations of their corresponding detectors are developed