Design of a linguistic statistical decoder for the recognition of continuous speech

  • Authors:
  • F. Jelinek;L. Bahl;R. Mercer

  • Affiliations:
  • -;-;-

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2006

Quantified Score

Hi-index 754.84

Visualization

Abstract

Most current attempts at automatic speech recognition are formulated in an artificial intelligence framework. In this paper we approach the problem from an information-theoretic point of view. We describe the overall structure of a linguistic statistical decoder (LSD) for the recognition of continuous speech. The input to the decoder is a string of phonetic symbols estimated by an acoustic processor (AP). For each phonetic string, the decoder finds the most likely input sentence. The decoder consists of four major subparts: 1) a statistical model of the language being recognized; 2) a phonemic dictionary and statistical phonological rules characterizing the speaker; 3) a phonetic matching algorithm that computes the similarity between phonetic strings, using the performance characteristics of the AP; 4) a word level search control. The details of each of the subparts and their interaction during the decoding process are discussed.