Maximum-rank array codes and their application to crisscross error correction

  • Authors:
  • R. M. Roth

  • Affiliations:
  • Israel Inst. of Technol., Haifa

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2006

Quantified Score

Hi-index 754.84

Visualization

Abstract

A μ-[n×n,k] array code C over a field F is a k-dimensional linear space of n×n matrices over F such that every nonzero matrix in C has rank ⩾μ. It is first shown that the dimension of such array codes must satisfy the Singleton-like bound k⩽n(n-μ+1). A family of so-called maximum-rank μ-[n×n,k=n ( n-μ+1)] array codes is then constructed over every finite field F and for every n and μ, 1⩽μ⩽n . A decoding algorithm is presented for retrieving every Γ∈C, given a received array Γ+E, where rank (E)+1⩽(μ-1)/2. Maximum-rank array codes can be used for decoding crisscross errors in n×n bit arrays, where the erroneous bits are confined to a number t of rows or columns (or both). This construction proves to be optimal also for this model of errors. It is shown that the behavior of linear spaces of matrices is quite unique compared with the more general case of linear spaces of n×n. . .×n hyper-arrays