Orthogonal multiple access over time- and frequency-selective channels

  • Authors:
  • G. Leus;Shengli Zhou;G. B. Giannakis

  • Affiliations:
  • Dept. of Electr. Eng., Katholieke Univ. Leuven, Haverlee, Belgium;-;-

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2006

Quantified Score

Hi-index 754.84

Visualization

Abstract

Suppression of multiuser interference (MUI) and mitigation of time- and frequency-selective (doubly selective) channel effects constitute major challenges in the design of third-generation wireless mobile systems. Relying on a basis expansion model (BEM) for doubly selective channels, we develop a channel-independent block spreading scheme that preserves mutual orthogonality among single-cell users at the receiver. This alleviates the need for complex multiuser detection, and enables separation of the desired user by a simple code-matched channel-independent block despreading scheme that is maximum-likelihood (ML) optimal under the BEM plus white Gaussian noise assumption on the channel. In addition, each user achieves the maximum delay-Doppler diversity for Gaussian distributed BEM coefficients. Issues like links with existing multiuser transceivers, existence, user efficiency, special cases, backward compatibility with direct-sequence code-division multiple access (DS-CDMA), and error control coding, are briefly discussed.