Design of fully diverse multiple-antenna codes based on Sp(2)

  • Authors:
  • Yindi Jing;B. Hassibi

  • Affiliations:
  • Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA;-

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2006

Quantified Score

Hi-index 754.84

Visualization

Abstract

Fully diverse constellations, i.e., sets of unitary matrices whose pairwise differences are nonsingular, are useful in multiple-antenna communications, especially in multiple-antenna differential modulation, since they have good pairwise error properties. Recently, group theoretic ideas, especially fixed-point-free (fpf) groups, have been used to design fully diverse constellations of unitary matrices. Here we construct four-transmit-antenna constellations appropriate for differential modulation based on the symplectic group Sp(2). They can be regarded as extensions of Alamouti's celebrated two-transmit-antenna orthogonal design which can be constructed from the group Sp(1). We further show that the structure of Sp(2) codes lends itself to efficient maximum-likelihood (ML) decoding via the sphere decoding algorithm. Finally, the performance of Sp(2) codes is compared with that of other existing codes including Alamouti's orthogonal design, a 4×4 complex orthogonal design, Cayley differential unitary space-time codes and group-based codes.