Signature optimization for CDMA with limited feedback

  • Authors:
  • W. Santipach;M. L. Honig

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., Northwestern Univ., Evanston, IL, USA;-

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2005

Quantified Score

Hi-index 755.02

Visualization

Abstract

We study the performance of joint signature-receiver optimization for direct-sequence code-division multiple access (DS-CDMA) with limited feedback. The receiver for a particular user selects the signature from a signature codebook, and relays the corresponding B index bits to the transmitter over a noiseless channel. We study the performance of a random vector quantization (RVQ) scheme in which the codebook entries are independent and isotropically distributed. Assuming the interfering signatures are independent, and have independent and identically distributed (i.i.d.) elements, we evaluate the received signal-to-interference plus noise ratio (SINR) in the large system limit as the number of users, processing gain, and feedback bits B all tend to infinity with fixed ratios. This SINR is evaluated for both the matched filter and linear minimum mean-squared error (MMSE) receivers. Furthermore, we show that this large system SINR is the maximum that can be achieved over any sequence of codebooks. Numerical results show that with the MMSE receiver, one feedback bit per signature coefficient achieves close to single-user performance. We also consider a less complex and suboptimal reduced-rank signature optimization scheme in which the user's signature is constrained to lie in a lower dimensional subspace. The optimal subspace coefficients are scalar-quantized and relayed to the transmitter. The large system performance of the quantized reduced-rank scheme can be approximated, and numerical results show that it performs in the vicinity of the RVQ bound. Finally, we extend our analysis to the scenario in which a subset of users optimize their signatures in the presence of random interference.