High-SNR power offset in multiantenna communication

  • Authors:
  • A. Lozano;A. M. Tulino;S. Verdu

  • Affiliations:
  • Bell Labs., Holmdel, NJ, USA;-;-

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2005

Quantified Score

Hi-index 755.50

Visualization

Abstract

The analysis of the multiple-antenna capacity in the high-SNR regime has hitherto focused on the high-SNR slope (or maximum multiplexing gain), which quantifies the multiplicative increase as a function of the number of antennas. This traditional characterization is unable to assess the impact of prominent channel features since, for a majority of channels, the slope equals the minimum of the number of transmit and receive antennas. Furthermore, a characterization based solely on the slope captures only the scaling but it has no notion of the power required for a certain capacity. This paper advocates a more refined characterization whereby, as a function of SNR|dB, the high-SNR capacity is expanded as an affine function where the impact of channel features such as antenna correlation, unfaded components, etc., resides in the zero-order term or power offset. The power offset, for which we find insightful closed-form expressions, is shown to play a chief role for SNR levels of practical interest.