Uplink-downlink duality via minimax duality

  • Authors:
  • Wei Yu

  • Affiliations:
  • Edward S. Rogers Sr. Dept. of Electr. & Comput. Eng., Univ. of Toronto, Ont.

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2006

Quantified Score

Hi-index 754.90

Visualization

Abstract

The sum capacity of a Gaussian vector broadcast channel is the saddle point of a minimax Gaussian mutual information expression where the maximization is over the set of transmit covariance matrices subject to a power constraint and the minimization is over the set of noise covariance matrices subject to a diagonal constraint. This sum capacity result has been proved using two different methods, one based on decision-feedback equalization and the other based on a duality between uplink and downlink channels. This paper illustrates the connection between the two approaches by establishing that uplink-downlink duality is equivalent to Lagrangian duality in minimax optimization. This minimax Lagrangian duality relation allows the optimal transmit covariance and the least-favorable-noise covariance matrices in a Gaussian vector broadcast channel to be characterized in terms of the dual variables. In particular, it reveals that the least favorable noise is not unique. Further, the new Lagrangian interpretation of uplink-downlink duality allows the duality relation to be generalized to Gaussian vector broadcast channels with arbitrary linear constraints. However, duality depends critically on the linearity of input constraints. Duality breaks down when the input constraint is an arbitrary convex constraint. This shows that the minimax representation of the broadcast channel sum capacity is more general than the uplink-downlink duality representation