Gray Coding for Multilevel Constellations in Gaussian Noise

  • Authors:
  • E. Agrell;Johan Lassing;E. G. Strom;T. Ottosson

  • Affiliations:
  • Dept. of Signals & Syst., Chalmers Univ. of Technol.;-;-;-

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2007

Quantified Score

Hi-index 754.84

Visualization

Abstract

The problem of finding the optimal labeling (bit-to-symbol mapping) of multilevel coherent phase shift keying (PSK), pulse amplitude modulation (PAM), and quadrature amplitude modulation (QAM) constellations with respect to minimizing the bit-error probability (BEP) over a Gaussian channel is addressed. We show that using the binary reflected Gray code (BRGC) to label the signal constellation results in the lowest possible BEP for high enough signal energy-to-noise ratios and analyze what is "high enough" in this sense. It turns out that the BRGC is optimal for PSK and PAM systems whenever the target BEP is at most a few percent, which covers most systems of practical interest. New and simple closed-form expressions are presented for the BEP of PSK, PAM, and QAM using the BRGC