On Achievable Rates and Complexity of LDPC Codes Over Parallel Channels: Bounds and Applications

  • Authors:
  • Igal Sason;Gil Wiechman

  • Affiliations:
  • Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa;-

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2007

Quantified Score

Hi-index 754.96

Visualization

Abstract

A variety of communication scenarios can be modeled by a set of parallel channels. Upper bounds on the achievable rates under maximum-likelihood (ML) decoding, and lower bounds on the decoding complexity per iteration of ensembles of low-density parity-check (LDPC) codes are presented. The communication of these codes is assumed to take place over statistically independent parallel channels where the component channels are memoryless, binary-input, and output-symmetric. The bounds are applied to ensembles of punctured LDPC codes where the puncturing patterns are either random or possess some structure. Our discussion is concluded by a diagram showing interconnections between the new theorems and some previously reported results