A Quasi-Random Approach to Space–Time Codes

  • Authors:
  • Keying Wu;Li Ping

  • Affiliations:
  • Res. & Innovation Center, Alcatel Shanghai Bell Co., Ltd., Shanghai;-

  • Venue:
  • IEEE Transactions on Information Theory
  • Year:
  • 2008

Quantified Score

Hi-index 754.84

Visualization

Abstract

This paper presents a quasi-random approach to space-time (ST) codes. The basic principle is to transmit randomly interleaved versions of forward error correction (FEC)-coded sequences simultaneously from all antennas in a multilayer structure. This is conceptually simple, yet still very effective. It is also flexible regarding the transmission rate, antenna numbers, and channel conditions (e.g., with intersymbol interference). It provides a unified solution to various applications where the traditional ST codes may encounter difficulties. We outline turbo-type iterative joint detection and equalization algorithms with complexity (per FEC-coded bit) growing linearly with the transmit antenna number and independently of the layer number. We develop a signal-to-noise-ratio (SNR) evolution technique and a bounding technique to assess the performance of the proposed code in fixed and quasi-static fading channels, respectively. These performance assessment techniques are very simple and reasonably accurate. Using these techniques as a searching tool, efficient power allocation strategies are examined, which can greatly enhance the system performance. Simulation results show that the proposed code can achieve near-capacity performance with both low and high rates at low decoding complexity.