A multilevel machine and vehicle scheduling in a flexible manufacturing system

  • Authors:
  • T. Sawik

  • Affiliations:
  • University of Mining & Metallurgy Faculty of Management Department of Computer Integrated Manufacturing Al. Mickiewicza 30, 30-059 Krakow, Poland

  • Venue:
  • Mathematical and Computer Modelling: An International Journal
  • Year:
  • 1996

Quantified Score

Hi-index 0.98

Visualization

Abstract

The paper presents a multilevel decision model for simultaneous machine and vehicle scheduling in a flexible manufacturing system. The system is composed of various machine types and a set of automated guided vehicles that permit each part to move between any pair of machines. The upper level of the decision model involves machine loading and part routing for which a bicriterion integer formulation is presented with the objective of balancing machine workloads and intermachine flows of parts. The lower level involves simultaneous scheduling of machines and vehicles for which a period-by-period heuristic is proposed based on a family of complex dispatching rules. The scheduling objective is to meet all part type requirements in a minimum time. Computational examples are included to illustrate the approach proposed.