Dynamic control model of BOF steelmaking process based on ANFIS and robust relevance vector machine

  • Authors:
  • Min Han;Yao Zhao

  • Affiliations:
  • Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116023 Dalian, PR China;Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116023 Dalian, PR China

  • Venue:
  • Expert Systems with Applications: An International Journal
  • Year:
  • 2011

Quantified Score

Hi-index 12.05

Visualization

Abstract

This study concerns with the control of basic oxygen furnace (BOF) steelmaking process and proposes a dynamic control model based on adaptive-network-based fuzzy inference system (ANFIS) and robust relevance vector machine (RRVM). The model aims to control the second blow period of BOF steelmaking and consists of two parts, the first of which is to calculate the values of control variables, viz., the amounts of oxygen and coolant requirement, and the other is to predict the endpoint carbon content and temperature of molten steel. In the first part, an ANFIS classifier is primarily constructed to determine whether coolant should be added or not, then an ANFIS regression model is utilized to calculate the amounts of oxygen and coolant. In the second part, a novel robust relevance vector machine is presented to predict the endpoint. RRVM solves the problem of sensitivity to outlier characteristic of classical relevance vector machine, thus obtaining higher prediction accuracy. The key idea of the proposed RRVM is to introduce individual noise variance coefficient to each training sample. In the process of training, the noise variance coefficients of outliers gradually decrease so as to reduce the impact of outliers and improve the robustness of the model. Simulations on industrial data show that the proposed dynamic control model yields good results on the oxygen and coolant calculation as well as endpoint prediction. It is promising to be utilized in practical BOF steelmaking process.