Adaptive digital access protocol: a MAC protocol for multiservice broadband access networks

  • Authors:
  • J. E. Dail;M. A. Dajer;Chia-Chang Li;P. D. Magill;C. A. Siller, Jr.;K. Sriram;N. A. Whitaker

  • Affiliations:
  • Network Services Div., AT&T Bell Labs., West Long Branch, NJ;-;-;-;-;-;-

  • Venue:
  • IEEE Communications Magazine
  • Year:
  • 1996

Quantified Score

Hi-index 0.25

Visualization

Abstract

The authors describe a protocol that can adapt to the changing demands of a mix of synchronous transfer mode (STM) and asynchronous transfer mode (ATM) applications and efficiently allocate bandwidth to a variety of bursty traffic sources. In the case of a hybrid fiber-coaxial (HFC) network, the protocol resides in customer premises equipment (CPE) and a common head-end/central-office (HE/CO) controller. A medium-access control (MAC) processor provides for dividing the time domain for a given digital bitstream into successive frames, each with multiple STM and ATM time slots. Within the STM region of a frame, variable-length time slots are allocated to calls (e.g., telephony, video telephony) requiring different amounts of bandwidth. In the upstream channels, a contention access signaling time slot is also provided in the STM region for call control and setup requests. Within the ATM region, fixed-length time slots accommodate one individual ATM cell. These ATM time slots may be reserved for a user for either the duration of a call or a burst of successive ATM cells, or shared via a contention process. At least one contention time slot is available for signaling messages related to ATM call control and setup requests. The MAC-layer protocol, its relation to circuit- and ATM-amenable applications, and its performance with respect to throughput, latency, and bandwidth efficiency for several service scenarios are examined