Modeling parameter and context dependencies in online architecture-level performance models

  • Authors:
  • Fabian Brosig;Nikolaus Huber;Samuel Kounev

  • Affiliations:
  • Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany;Karlsruhe Institute of Technology, Karlsruhe, Germany

  • Venue:
  • Proceedings of the 15th ACM SIGSOFT symposium on Component Based Software Engineering
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Modern service-oriented enterprise systems have increasingly complex and dynamic loosely-coupled architectures that often exhibit poor performance and resource efficiency and have high operating costs. This is due to the inability to predict at run-time the effect of dynamic changes in the system environment and adapt the system configuration accordingly. Architecture-level performance models provide a powerful tool for performance prediction, however, current approaches to modeling the execution context of software components are not suitable for use at run-time. In this paper, we analyze the typical online performance prediction scenarios and propose a novel performance meta-model for expressing and resolving parameter and context dependencies, specifically designed for use in online scenarios. We motivate and validate our approach in the context of a realistic and representative online performance prediction scenario based on the SPECjEnterprise2010 standard benchmark.