Controlled linear perturbation

  • Authors:
  • Elisha Sacks;Victor Milenkovic;Min-Ho Kyung

  • Affiliations:
  • Computer Science Department, Purdue University, West Lafayette, IN 47907-2066, USA;Department of Computer Science, University of Miami, Coral Gables, FL 33124-4245, USA;Department of Digital Media, Ajou University, Suwon, South Korea

  • Venue:
  • Computer-Aided Design
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present an algorithmic solution to the robustness problem in computational geometry, called controlled linear perturbation, and demonstrate it on Minkowski sums of polyhedra. The robustness problem is how to implement real RAM algorithms accurately and efficiently using computer arithmetic. Approximate computation in floating point arithmetic is efficient but can assign incorrect signs to geometric predicates, which can cause combinatorial errors in the algorithm output. We make approximate computation accurate by performing small input perturbations, which we compute using differential calculus. This strategy supports fast, accurate Minkowski sum computation. The only prior robust implementation uses a less efficient algorithm, requires exact algebraic computation, and is far slower based on our extensive testing.