A Workflow-Aware Storage System: An Opportunity Study

  • Authors:
  • Emalayan Vairavanathan;Samer Al-Kiswany;Lauro Beltrão Costa;Zhao Zhang;Daniel S. Katz;Michael Wilde;Matei Ripeanu

  • Affiliations:
  • -;-;-;-;-;-;-

  • Venue:
  • CCGRID '12 Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012)
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper evaluates the potential gains a workflow-aware storage system can bring. Two observations make us believe such storage system is crucial to efficiently support workflow-based applications: First, workflows generate irregular and application-dependent data access patterns. These patterns render existing storage systems unable to harness all optimization opportunities as this often requires conflicting optimization options or even conflicting design decision at the level of the storage system. Second, when scheduling, workflow runtime engines make suboptimal decisions as they lack detailed data location information. This paper discusses the feasibility, and evaluates the potential performance benefits brought by, building a workflow-aware storage system that supports per-file access optimizations and exposes data location. To this end, this paper presents approaches to determine the application-specific data access patterns, and evaluates experimentally the performance gains of a workflow-aware storage approach. Our evaluation using synthetic benchmarks shows that a workflow-aware storage system can bring significant performance gains: up to 7x performance gain compared to the distributed storage system - MosaStore and up to 16x compared to a central, well provisioned, NFS server.