Antenna diversity combining and finite-tap decision feedback equalization for high-speed data transmission

  • Authors:
  • J. C.L. Ng;K. B. Letaief;R. D. Murch

  • Affiliations:
  • Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., Clear Water Bay;-;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

The next-generation wireless communication systems are expected to support high-speed data transmission. Associated with high transmission rates, however, is the problem of multipath intersymbol interference (ISI) due to frequency-selective fading. Decision feedback equalization (DFE) and antenna diversity combining are two practical techniques for combating multipath ISI. Through simulations we investigate the performance of diversity combining, together with DFE, under various numbers of antenna branches and equalization taps, in a quasistationary frequency-selective fading environment with additive white Gaussian noise (AWGN) and cochannel interference (CCI). We consider joint optimization combining and power selection diversity combining. We simulate the combiner, using quaternary phase shift keying (QPSK) modulation with up to four antenna branches. Our results show that using antenna diversity and DFE with joint optimization combining provides performance improvement with lower computational complexity, as compared to that of using either DFE or diversity combining alone for combating ISI