A microcellular ray-tracing propagation model and evaluation of its narrow-band and wide-band predictions

  • Authors:
  • G. E. Athanasiadou;A. R. Nix;J. P. McGeehan

  • Affiliations:
  • Centre for Commun. Res., Bristol Univ.;-;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

Due to the site specific nature of microcellular operational environments, propagation models are required to take into account the exact position, orientation and electrical properties of individual buildings, and hence, ray-tracing techniques have emerged as the dominant methods to predict propagation in such environments. A novel hybrid three-dimensional (3-D) ray-tracing algorithm which can evaluate scenarios incorporating many thousands of objects by utilising the concept of “illumination zones,” is presented. In order to evaluate the accuracy of the presented model, comparisons of narrow-band and wide-band predictions with measurements are performed for a variety of scenarios. First, power comparisons show that very accurate predictions can be achieved (RMS errors less than 3.7 dB). Then, wide-band analysis shows that since the RMS delay spread for systems with finite bandwidth is a function of the multipath phase, only average measured and predicted RMS delay spread values can be compared and as a result, limited averaging can produce large RMS errors. With sufficient averaging the achieved wide-band accuracy in terms of the predicted RMS delay spread, is adequate for most planning purposes