Joint equalization and interference suppression for high data rate wireless systems

  • Authors:
  • S. L. Ariyavisitakul;J. H. Winters;N. R. Sollenberger

  • Affiliations:
  • Home Wireless Networks, Norcross, GA;-;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

Enhanced Data Rates for Global Evolution (EDGE) is currently being standardized as an evolution of GSM in Europe and of IS-136 in the United States as an air interface for high speed data services for third generation mobile systems. In this paper, we study space-time processing for EDGE to provide interference suppression. We consider the use of two receive antennas and propose a joint equalization and diversity receiver. This receiver uses feedforward filters on each diversity branch to perform minimum mean-square error cochannel interference suppression, while leaving the intersymbol interference to be mitigated by the subsequent equalizer. The equalizer is a delayed decision feedback sequence estimator, consisting of a reduced-state Viterbi processor and a feedback filter. The equalizer provides soft output to the channel decoder after deinterleaving. We describe a novel weight generation algorithm and present simulation results on the link performance of EDGE with interference suppression. These results show a significant improvement in the signal-to-interference ratio (SIR) performance due to both diversity (against fading) and interference suppression. At a 10% block error rate, the proposed receiver provides a 20 dB improvement in SIR for both the typical urban and hilly terrain profiles