Low-complexity iterative decoding with decision-aided equalization for magnetic recording channels

  • Authors:
  • Zi-Ning Wu;J. M. Cioffi

  • Affiliations:
  • Marvell Semicond. Inc., Sunnyvale, CA;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

Turbo codes are applied to magnetic recoding channels by treating the channel as a rate-one convolutional code that requires a soft a posteriori probability (APP) detector for channel inputs. The complexity of conventional APP detectors, such as the BCJR algorithm or the soft-output Viterbi algorithm (SOVA), grows exponentially with the channel memory length. This paper derives a new APP module for binary intersymbol interference (ISI) channels based on minimum mean squared error (MMSE) decision-aided equalization (DAE), whose complexity grows linearly with the channel memory length, and it shows that the MMSE DAE is also optimal by the maximum a posteriori probability (MAP) criterion. The performance of the DAE is analyzed, and an implementable turbo-DAE structure is proposed. The reduction of channel APP detection complexity reaches 95% for a five-tap ISI channel when the DAE is applied. Simulations performed on partial response channels show close to optimum performance for this turbo-DAE structure. Error propagation of the DAE is also studied, and two fixed-delay solutions are proposed based on combining the DAE with the BCJR algorithm