Partial sampling MMSE interference suppression in asynchronous multicarrier CDMA system

  • Authors:
  • Pingping Zong;Kunjie Wang;Y. Bar-Ness

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., New Jersey Inst. of Technol., Newark, NJ;-;-

  • Venue:
  • IEEE Journal on Selected Areas in Communications
  • Year:
  • 2006

Quantified Score

Hi-index 0.07

Visualization

Abstract

Linear minimum mean square error (LMMSE) receivers for asynchronous multicarrier code division multiple access (MC-CDMA) system under frequency-selective Rayleigh fading channel is studied. The performance of this LMMSE receiver is evaluated and shown to be superior to that of the other two schemes, equal-gain combining (EQC) and maximum-ratio combining (MRC). However, a perfect timing estimation of the desired user is needed for these receivers, as a misaligned sampling interval of these receivers results in severely self intersymbol interference (ISI) and intercarrier interference (ICI) for the desired signal at the output. In order to remove the timing acquisition requirement of a receiver for an asynchronous MC-CDMA system, we proposed a novel partial sampling MMSE (PS-MMSE) receiver. Numerical result shows that the PS-MMSE receiver without timing knowledge provides significantly stronger interference suppression capability than the LMMSE receiver with known timing. Moreover, a so-called reduced complexity partial sampling MMSE (RPS-MMSE) receiver is proposed to make the number of the receiver's taps independent of the number of subcarriers. Results show that with a proper grouping parameter, a much less complicated RPS-MMSE receiver achieves almost the same performance as the PS-MMSE receiver. Thus, one is able to implement an MMSE receiver without a prior timing requirement to perform multiuser detection for the MC-CDMA system in an asynchronous scenario at the expense of a slight complexity increase